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Optimal growth under discounting in the
two-sector Robinson–Solow–Srinivasan model:

a dynamic programming approach†
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On the Occasion of the 60th Birthday of Kazuo Nishimura

We use a version of a two-sector model to provide a strong form of a “folk-theorem” on the existence of a
threshold discount factor such that: (i) for discount factors above this threshold value, optimal behavior is
qualitatively similar to that in the corresponding undiscounted optimization problem, (ii) for discount
factors below this threshold value, optimal behavior is qualitatively different from that in the
undiscounted case. In the process, we provide an explicit solution of a non-linear optimal policy function
for all discount factors above the threshold value. Our bifurcation analysis is conducted by using the
dynamic programming approach, and we exploit the convex structure of our model to develop a variation
of the standard method in dynamic programming used to identify the optimal policy correspondence.

Keywords: Dynamic programming; Value function; Optimal policy correspondence; Bifurcation
analysis; Threshold discount factor

JEL Classification: C61; D90; O41

1. Introduction

It is a “folk theorem” of the literature on optimal economic growth that there is a threshold

discount factor such that the stability properties of optimal programs are qualitatively the same

as those obtained for the undiscounted case for all discount factors above that threshold, and

that the qualitative behavior changes for all discount factors below that thresholdk. In this

paper, we provide a particularly strong version of this result in the context of the two-sector

version of the Robinson–Solow–Srinivasan model, referred to henceforth as the RSS model#.

Specifically we show that there is a threshold discount factor r* ; ð1=jÞ, (where j

represents, in the context of the model, the rate of transformation between machines today
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and machines tomorrow, while maintaining full-employment of both labor and capital), such

that (i) for all discount factors r [ ðr*; 1Þ, the optimal policy correspondence is the same as

the optimal policy function for the corresponding undiscounted optimization problem†; and

(ii) for all discount factors r [ ð0; r*Þ, the optimal policy correspondence is not the same as

the optimal policy function for the corresponding undiscounted optimization problem‡.

Thus, r * is a bifurcation value of the discount factor, marking a qualitative change in optimal

behavior as one crosses this threshold.

The explicit solution of an optimal policy function allows one to study optimal transition

dynamics, as well as optimal long-run behavior. Ours is one of the few examples of an explicit

solution of the optimal policy correspondence as a non-linear optimal policy function, arising

from a dynamic optimization problem in economics{. As in the undiscounted case, two

features of the transition dynamics (for r [ ðr*; 1Þ) are worth noting. First, starting from

initial stocks below the modified golden-rule, optimality always requires an over-building

phase, leading to stocks above the modified golden-rule stock, even when the long-run

behavior warrants a convergence to the modified golden-rule stock. Second, even when it is

feasible to fully utilize the available capital stock, it is not always optimal to do so, making it

possible to observe excess-capacity and production of machines in the same time period.

Our earlier analysis of the corresponding undiscounted optimization model was

accomplished by a synthesis of the dynamic programming and the value-loss approaches to

characterizing optimality. In contrast, in this paper, we rely exclusively on the dynamic

programming approach. In this regard, it is worthwhile to make two brief comments of a

technical nature. First, exploiting the convex structure of our model, we use a variation of the

standard method in dynamic programming to solve for the value function and the optimal

policy correspondence, and this requires us to specify a “candidate” value function and a

“candidate” policy correspondence on a relatively “small” subset of the state space. This

method might be useful in the application of the dynamic programming approach in other

contexts, since convex structures are often an integral part of many dynamic models in

economics. Second, the key to our bifurcation analysis is the study of a quadratic inequality,

and the bifurcation value of the discount factor is seen to emerge naturally as the smaller root

associated with the corresponding quadratic equation.

2. Preliminaries

2.1 The two-sector version of the RSS model

A single consumption good is produced by infinitely divisible labor and machines with

the further Leontief specification that a unit of labor and a unit of a machine produce a unit of

the consumption good. In the investment-goods sector, only labor is required to produce

†See Ref. [5] for the complete analysis of the corresponding undiscounted optimization problem in the two-sector
RSS model, and an explicit solution of the optimal policy function in that case.

‡In particular, the first part of this statement implies that we obtain an explicit solution for the optimal policy
correspondence when r [ ðr *; 1Þ. For the second part of this statement, it is not important to actually obtain an
explicit solution of the optimal policy correspondence for r [ ð0; r *Þ and we do not. See, however, our concluding
remarks in the final section of the paper for some hints about what it might look like.

{The best known instance of an explicit solution of a non-linear optimal policy function is the Weitzman example,
reported in Ref. [13], and discussed extensively in Refs. [1,7,9].
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machines, with a . 0 units of labor producing a single machine. Machines depreciate at the

rate 0 , d , 1. A constant amount of labor, normalized to unity, is available in each time

period t [ N, where N is the set of non-negative integers. Thus, in the canonical formulation

surveyed in Ref. [8], the collection of production plans (x,x0), the amount x0 of machines in

the next period (tomorrow) from the amount x available in the current period (today), is given

by the transition possibility set:

V ¼ {ðx; x0Þ [ R2
þ : x0 2 ð1 2 dÞx $ 0; and aðx 0 2 ð1 2 dÞxÞ # 1}

where z ; ðx0 2 ð1 2 dÞxÞ is the number of machines that are produced, and z $ 0 and

az # 1 respectively formalize constraints on reversiblity of investment and the use of

labor. Associated with V is the transition correspondence, G : Rþ ! Rþ, given by

GðxÞ ¼ {x0 [ Rþ : ðx; x0Þ [ V}. For any ðx; x0Þ [ V, one can consider the amount y of the

machines available for the production of the consumption good, leading to a correspondence

L : V! Rþ with

Lðx; x0Þ ¼ {y [ Rþ : 0 # y # x and y # 1 2 aðx0 2 ð1 2 dÞxÞ}

Welfare is derived only from the consumption good and is represented by a linear function,

normalized so that y units of the consumption good yields a welfare level y.A reduced form

utility function, u : V! Rþ with uðx; x0Þ ¼ max{y [ Lðx; x0Þ} indicates the maximum

welfare level that can be obtained today, if one starts with x of machines today, and ends up

with x0 of machines tomorrow, where ðx; x0Þ [ V. Intertemporal preferences are represented

by the present value of the stream of welfare levels, using a discount factor r [ ð0; 1Þ.

An economy E consists of a triple (a,d,r), and the following concepts apply to it.

A program from xo is a sequence {xðtÞ; yðtÞ} such that xð0Þ ¼ xo, and for all t [

N; ðxðtÞ; xðt þ 1ÞÞ [ V and yðtÞ ¼ maxLððxðtÞ; xðt þ 1ÞÞ. A program {xðtÞ; yðtÞ} is simply a

program from xð0Þ, and associated with it is a gross investment sequence {zðt þ 1Þ}, defined

by zðt þ 1Þ ¼ ðxðt þ 1Þ2 ð1 2 dÞxðtÞÞ for all t [ N. It is easy to check that every program

{xðtÞ; yðtÞ} is bounded by max{xð0Þ; 1=ad} ; Mðxð0ÞÞ, and in particular every program

{xðtÞ; yðtÞ} from x [ Z ; ½0; ð1=adÞ� is bounded by ð1=adÞ.

For every program {xðtÞ; yðtÞ}, we have
P1

t¼0r
tuðxðtÞ; xðt þ 1ÞÞ , 1: A program

{�xðtÞ; �yðtÞ} from xo is called optimal if:

X1
t¼0

r tuðxðtÞ; xðt þ 1ÞÞ #
X1
t¼0

r tuð�xðtÞ; �xðt þ 1ÞÞ

for every program {xðtÞ; yðtÞ} from xo. A program {xðtÞ; yðtÞ} is called stationary if for all

t [ N, we have ðxðtÞ; yðtÞÞ ¼ ðxðt þ 1Þ; yðt þ 1ÞÞ. A stationary optimal program is a program

that is stationary and optimal; in this case, the stationary level of xðtÞ is called a stationary

optimal stock.

The parameter, j ¼ ð1=aÞ2 ð1 2 dÞ, which figures prominently in our analysis, represents

the rate of transformation between machines today and machines tomorrow, while

maintaining full-employment of both labor and capital. Without further explicit mention, j

will be assumed to be positive in what follows.
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2.2 The modified golden rule

A modified golden rule is a pair ðx̂; p̂Þ [ R2
þ such that ðx̂; x̂Þ [ V and:

uðx̂; x̂Þ þ ðr2 1Þp̂x̂ $ uðx; x0Þ þ p̂ðrx0 2 xÞ for all ðx; x0Þ [ V: ð1Þ

Given a modified golden-rule ðx̂; p̂Þ [ R2
þ, we know that x̂ is a stationary optimal stock (see,

for example, [8]).

Our first proposition establishes the existence of a modified golden-rule. A distinctive

feature of the RSS model with discounting is that we can describe the modified golden-rule

stock explicitly in terms of the parameters of the model.

Proposition 1. There is ðx̂; p̂Þ [ R2
þ such that ðx̂; x̂Þ [ V, where x̂ is independent of r,

and:

uðx̂; x̂Þ þ ðr2 1Þp̂x̂ $ uðx; x 0Þ þ p̂ðrx 0 2 xÞ for all ðx; x 0 Þ [ V: ð1Þ

Proof. We define:

x̂ ¼ 1=ð1 þ adÞ; and p̂ ¼ 1=ð1 þ rjÞ

where j ¼ ð1=aÞ2 ð1 2 dÞ. Clearly, ðx̂; p̂Þ [ R2
þ and ðx̂; x̂Þ [ V, x̂ [ Lðx̂; x̂Þ. Further, x̂ is

independent of r. We will show that ðx̂; p̂Þ is a modified golden-rule of the economy ðV; u; rÞ.

Let ðx; x0Þ [ V, and let y [ Lðx; x0Þ. Define bðx; x0; yÞ ¼ ½1 2 ax0 þ ð1 2 dÞax�2 y, and

aðx; x0; yÞ ¼ x2 y. Note that:

y # ½1 2 ax 0 þ ð1 2 dÞax� ð2Þ

so that bðx; x 0; yÞ $ 0, and y # x, so that aðx; x 0; yÞ $ 0.

Define x 00 $ x 0, such that:

y ¼ ½1 2 ax 00 þ ð1 2 dÞax� ð3Þ

Then ðx; x 00Þ [ V, and y [ Lðx; x00Þ. This allows us to deal with a full-employment point, and

permits us to use the equality in equation (3) rather than the inequality in equation (2). Then,

we can compute:

yþ rp̂x 00 2 p̂x ¼ ½1 2 ax 00 þ ð1 2 dÞax� þ rp̂x 00 2 p̂x

¼ 1 þ ðrp̂2 aÞx 00 þ ½ð1 2 dÞa2 p̂�x ð4Þ

Using the fact that y ; x2 aðx; x0; yÞ, we have:

½1 2 ax 00 þ ð1 2 dÞax� ¼ x2 aðx; x 0; yÞ

and this can be rewritten conveniently as:

x00 ¼ ð1=aÞ þ ½ð1 2 dÞ2 ð1=aÞ�xþ ½aðx; x0; yÞ=a� ¼ ð1=aÞ2 jxþ ½aðx; x0; yÞ=a� ð5Þ
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We can now use equation (5) in equation (4) to get:

yþ rp̂x 00 2 p̂x¼ 1þðrp̂2 aÞx 00 þ ½ð12 dÞa2 p̂�x

¼ 1þðrp̂2 aÞð1=aÞ þ ½2ðrp̂2 aÞjþ ð12 dÞa2 p̂�xþ ðrp̂2 aÞ½aðx;x0;yÞ=a�

¼ ðrp̂=aÞ þ ½2ðrp̂2 aÞjþ ð12 dÞa2 p̂�xþ ðrp̂2 aÞ½aðx;x0;yÞ=a� ð6Þ

Now, by definition of p̂, we have:

½2ðrp̂2 aÞjþ ð1 2 dÞa2 p̂� ¼ 2ðrjþ 1Þp̂þ ð1 2 dÞaþ abj

¼ 21 þ ð1 2 dÞa2 ½ð1 2 dÞ2 ð1=aÞ�a ¼ 0 ð7Þ

So, using equation (7) in equation (6), we obtain:

yþ rp̂x00 2 p̂x ¼ ðrp̂=aÞ þ ðrp̂2 aÞ½aðx; x0; yÞ=a� ð8Þ

Finally, note that by definition of bðx; x0; yÞ, we have bðx; x0; yÞ ¼ aðx00 2 x0Þ, so that

x00 ¼ x0 þ ½bðx; x0; yÞ=a�, and using this in equation (8), we get:

yþ rp̂x0 2 p̂x ¼ ðrp̂=aÞ2 ða2 rp̂Þ½aðx; x0; yÞ=a�2 rp̂½bðx; x0; yÞ=a� ð9Þ

For ðx; x0Þ ¼ ðx̂; x̂Þ and y ¼ ŷ ¼ x̂, it is easy to check that aðx; x0; yÞ ¼ 0 and bðx; x0; yÞ ¼ 0,

so that:

ŷþ rp̂x̂2 p̂x̂ ¼ ðrp̂=aÞ ð10Þ

Combining equation (9) and (10), and noting that a . rp̂, we get:

yþ rp̂x0 2 p̂x # ŷþ rp̂x̂2 p̂x̂ ð11Þ

which establishes equation (1). A

2.3 The dynamic programming approach

In this subsection, we describe the dynamic programming approach to characterizing

optimality§. Underlying the approach are (a) a value function, and (b) a policy correspondence.

Connecting these two objects of interest is the functional equation of dynamic programming.

Using standard methods, one can establish that there exists an optimal program from every

x [ X ; ½0;1Þ. Thus, we can define a value function, V : X ! R by:

VðxÞ ¼
X1
t¼0

r tuð�xðtÞ; �xðt þ 1ÞÞ ð12Þ

where {�xðtÞ; �yðtÞ} is an optimal program from x. Then, it is straightforward to check that V is

concave, non-decreasing and continuous on X. Further, it can be verified that V is, in fact,

increasing on X.

It can be shown that for each x [ X, the Bellman equation:

VðxÞ ¼ max
x0[GðxÞ

{uðx; x0Þ þ rVðx0Þ} ð13Þ

§Our exposition is deliberately brief. For a comprehensive account of the dynamic programming approach to
optimal growth models, see Ref. [6].
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holds. For each x [ X, we denote by hðxÞ the set of x0 [ GðxÞ which maximize {uðx; x0Þ þ

dVðx0Þ} among all x0 [ GðxÞ. That is, for each x [ X,

hðxÞ ¼ arg max
x0[GðxÞ

{uðx; x0Þ þ rVðx0Þ}

� �
ð14Þ

Then, a program {xðtÞ; yðtÞ} from x [ X is an optimal program from x if and only if it satisfies

the equation: VðxðtÞÞ ¼ uðxðtÞ; xðt þ 1ÞÞ þ dVðxðt þ 1ÞÞ for t $ 0; that is, if and only if

xðt þ 1Þ [ hðxðtÞÞ for t $ 0. We call h the (optimal) policy correspondence.

It is easy to verify, using r [ ð0; 1Þ, that the function V, defined by equation (12), is the

unique continuous function on Z ; ½0; ð1=adÞ� which satisfies the functional equation of

dynamic programming, given by equation (13).

The connection between the value function in the dynamic programming approach and the

modified golden-rule may be noted as follows.

Proposition 1 shows that:

ðx̂; p̂Þ ¼ ð1=ð1 þ adÞ; 1=ð1 þ rjÞÞ ð15Þ

is a modified golden-rule of the economy ðV; u; rÞ. A standard argument can now be used to

show that x̂ is a stationary optimal stock of the economy ðV; u; rÞ. Consequently, we have:

Vðx̂Þ ¼ x̂=ð1 2 rÞ ð16Þ

It is easy to verify that:

VðxÞ2 p̂x # Vðx̂Þ2 p̂x̂ for all x $ 0 ð17Þ

Choosing x ¼ x̂þ 1 (with 1 . 0) in (16), and letting 1! 0, we obtain:

V 0
þðx̂Þ # p̂ ð18Þ

Using equation (18) and (1), we have:

V 0
þðx̂Þ # p̂ ¼ 1=ð1 þ rjÞ , ða=rÞ ð19Þ

3. Basic properties of the optimal policy correspondence

In this section, we describe basic properties of the optimal policy correspondence, with

minimal restrictions on the parameters of our model. These preliminary properties will help

us to establish the principal bifurcation result in the next section.

To this end, we describe three regions of the state space:

A ¼ ½0; x̂�; B ¼ ðx̂; kÞ; C ¼ ½k;1Þ ð20Þ

where k ¼ x̂=ð1 2 dÞ. In addition, we define a function, g : X ! X, by:

gðxÞ ¼

ð1 2 dÞx for x [ C

x̂ for x [ B

ð1=aÞ2 jx for x [ A

8>><
>>: ð21Þ

We refer to g as the “pan map”, in view of the fact that its graph resembles a pan.
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We further subdivide the region B into two regions as follows:

D ¼ ðx̂; 1Þ; E ¼ ½1; kÞ ð22Þ

and define a correspondence, G : X ! X, by:

GðxÞ ¼

{ð1 2 dÞx} for x [ C

½ð1 2 dÞx; x̂� for x [ E

½ð1=aÞ2 jx; x̂� for x [ D

{ð1=aÞ2 jx} for x [ A

8>>>>><
>>>>>:

ð23Þ

The main result of this section can be summarized in the following proposition.

Proposition 2. The optimal policy correspondence, h, satisfies:

hðxÞ ,
{gðxÞ} for all x [ A< C

GðxÞ for all x [ B

(

The proposition is established in the following subsections by proving three lemmas,

dealing with the behavior of the policy correspondence in the regions C, A and B (in that

order).

3.1 The policy function for high initial stocks

We first examine the policy function for high values of the initial stock (region C). Denoting

(as in Section 3) the policy correspondence by h, we now claim that for all x [ C, it is given

precisely by g.

Lemma 1. The optimal policy correspondence, h, satisfies:

hðxÞ ¼ {gðxÞ} for x [ C ð24Þ

Proof. Let x [ C, and suppose contrary to equation (24), we have z [ hðxÞ, such that

z – gðxÞ. Since the irreversible investment constraint implies that z $ ð1 2 dÞx, there is

1 . 0 such that z ¼ gðxÞ þ 1. Then, we have the following:

VðxÞ ¼ uðx; gðxÞ þ 1Þ þ rVðgðxÞ þ 1Þ; VðxÞ $ uðx; gðxÞÞ þ rVðgðxÞ ð25Þ

This yields:

uðx; gðxÞÞ2 uðx; gðxÞ þ 1Þ # r½VðgðxÞ þ 1Þ2 VðgðxÞ� # rV 0
þðgðxÞÞ1

# rV 0
þðx̂Þ1 # ½r=ð1 þ rjÞ�1

ð26Þ

the first inequality following from equation (25), the second from concavity of V, the third

from concavity of V and the fact that gðxÞ $ x̂ (from equation (21)), and the last from

equation (19). Now, note that: ½r=ð1 þ rjÞ� # ½1=ð1 þ jÞ� ¼ a=ð1 þ adÞ , a, so that
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we have:

uðx; gðxÞÞ2 uðx; gðxÞ þ 1Þ , a1 ð27Þ

by using equation (26).

On the other hand:

uðx; gðxÞ þ 1Þ # 1 2 a½gðxÞ þ 12 ð1 2 dÞx� ¼ 1 2 a1

and:

uðx; gðxÞÞ ¼ min{x; 1} ¼ 1

so that:

uðx; gðxÞÞ2 uðx; gðxÞ þ 1Þ $ a1

which contradicts equation (27) and establishes the lemma. A

3.2 The policy function for low initial stocks

We next examine the policy correspondence for low values of the initial stock (region A), and

establish that for all x [ A, it is also given precisely by g.

Lemma 2. The optimal policy correspondence, h, satisfies:

hðxÞ ¼ {gðxÞ} for all x [ A ð28Þ

Proof. Suppose, contrary to equation (28), there is x [ ½0; x̂�, and z [ hðxÞ, such that

z – gðxÞ. We consider two cases: (i) z , gðxÞ, (ii) z . gðxÞ.

Case (i). : Suppose z , gðxÞ. Note that uðx; zÞ # x. Thus, by the optimality principle, we

have:

VðxÞ ¼ uðx; zÞ þ rVðzÞ , xþ rVðgðxÞÞ ð29Þ

the inequality following from the fact that V is increasing. But, using equation (21), we have:

1 2 a½gðxÞ2 ð1 2 dÞx� ¼ 1 2 ½1 2 ajx� þ að1 2 dÞx ¼ x ð30Þ

so that:

uðx; gðxÞÞ ¼ min{x; 1 2 a½gðxÞ2 ð1 2 dÞx�} ¼ x ð31Þ

by using equation (30). Thus, we must have:

VðxÞ $ uðx; gðxÞÞ þ rVðgðxÞÞ ¼ xþ rVðgðxÞÞ

which contradicts equation (29).

Case. (ii): Suppose z . gðxÞ. Let 1 ¼ z2 gðxÞ, so that 1 . 0. Note that:

uðx; zÞ # 1 2 a½z2 ð1 2 dÞx� ¼ x2 a1 ð32Þ
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the equality in equation (32) following from equation (21), as in equation (30) above. Using

the optimality principle,

VðxÞ ¼ uðx; zÞ þ rVðzÞ # x2 a1þ r½VðzÞ2 VðgðxÞÞ� þ rVðgðxÞÞ

# x2 a1þ rV 0
þðgðxÞÞ1þ rVðgðxÞÞ # x2 a1þ rV 0

þðx̂Þ1þ rVðgðxÞÞ

# x2 a1þ ½r=ð1 þ rjÞ�1þ rVðgðxÞÞ , xþ rVðgðxÞÞ ð33Þ

the first inequality following from equation (29), the second inequality following from concavity

of V, the third inequality following from concavity of V and the fact that gðxÞ $ x̂ by equation

(21), the fourth and fifth inequalities following from equation (19). But, since ðx; gðxÞÞ [ V and

uðx; gðxÞÞ ¼ x (as in equation (31) above) we must have VðxÞ $ xþ rVðgðxÞÞ, which

contradicts equation (33), proving the lemma. A

3.3 The policy correspondence for the middle section

We now turn to the “middle section” (B). In this subsection, we demonstrate the basic

property that the optimal policy correspondence for this region is included in the

correspondence G, leaving a more precise specification to the next section.

Lemma 3. The optimal policy correspondence, h, satisfies:

hðxÞ , GðxÞ for all x [ B ð34Þ

Proof. Consider, first, the initial stocks in the range E ¼ ½1; kÞ. We claim that:

hðxÞ , GðxÞ for x [ E ð35Þ

Suppose, contrary to equation (35), there is x [ E, and z [ hðxÞ, such that z does not

belong to GðxÞ. Since investment is irreversible, z $ ð1 2 dÞx. Thus, by equation (23), we

must have z . x̂; denote ðz2 x̂Þ by 1, so that 1 . 0.

Note that 1 2 a½x̂2 ð1 2 dÞx� # 1 # x, so that:

uðx; x̂Þ ¼ 1 2 a½x̂2 ð1 2 dÞx�

Also, we have:

uðx; zÞ # 1 2 a½z2 ð1 2 dÞx� ¼ uðx; x̂Þ2 a1 ð36Þ

Using the optimality principle, we have:

VðxÞ ¼ uðx; zÞ þ rVðzÞ # uðx; x̂Þ2 a1þ rVðzÞ

¼ uðx; x̂Þ2 a1þ r½VðzÞ2 Vðx̂Þ� þ rVðx̂Þ # rV 0
þðx̂Þ12 a1þ VðxÞ , VðxÞ

ð37Þ

the first inequality in equation (37) following from equation (36), the second from concavity

of V and the optimality principle, and the last from equation (19). The contradiction in

equation (37) establishes our claim.

Consider next initial stocks in the range D ¼ ðx̂; 1Þ. We claim now that:

hðxÞ , GðxÞ for x [ D ð38Þ
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Suppose, contrary to (38), that there is x [ D, and z [ hðxÞ, such that z does not belong to

GðxÞ. Denote ½ð1=aÞ2 jx� by HðxÞ. There are two cases to consider: (i) z , HðxÞ, (ii)

z . HðxÞ.

Case (i). : Suppose z , HðxÞ. Note that uðx; zÞ # x. Thus, by the optimality principle, we

have:

VðxÞ ¼ uðx; zÞ þ rVðzÞ , xþ rVðHðxÞÞ ð39Þ

the inequality following from the fact that V is increasing. But, by definition of H:

1 2 a½HðxÞ2 ð1 2 dÞx� ¼ 1 2 ½1 2 ajx� þ að1 2 dÞx ¼ x

so that:

uðx;HðxÞÞ ¼ min{x; 1 2 a½HðxÞ2 ð1 2 dÞx�} ¼ x

and we must have:

VðxÞ $ uðx;HðxÞÞ þ rVðHðxÞÞ ¼ xþ rVðHðxÞÞ

which contradicts equation (39).

Case (ii). : Suppose z . HðxÞ. Since z is not in GðxÞ, we must have z . x̂. Let 1 ¼ z2 x̂, so

that 1 . 0. Note that:

1 2 a½x̂2 ð1 2 dÞx� # 1 2 a½ð1=aÞ2 jx� þ að1 2 dÞx ¼ x

so that:

uðx; x̂Þ ¼ min{1 2 a½x̂2 ð1 2 dÞx�; x} ¼ 1 2 a½x̂2 ð1 2 dÞx� ð40Þ

Also,

uðx; zÞ # 1 2 a½z2 ð1 2 dÞx� ¼ uðx; x̂Þ2 a1 ð41Þ

the equality in equation (41) following from equation (39). Using the optimality principle,

VðxÞ ¼ uðx; zÞ þ rVðzÞ # uðx; x̂Þ2 a1þ r½VðzÞ2 Vðx̂Þ� þ rVðx̂Þ

# VðxÞ2 a1þ rV 0
þðx̂Þ1 , VðxÞ

ð42Þ

the first inequality in equation (42) following from equation (41), the second from concavity

of V and the optimality principle, and the last from equation (19). The contradiction in

equation (42) establishes our claim equation (38) and hence the lemma. A

3.4 A characterization of the pan policy map

Given Proposition 2, it is clear that the optimal policy correspondence is fully determined,

except for the middle section, B. If the modified golden-rule stock x̂ belongs to hðxÞ for some

x [ B, then it does so for every x [ B: this is the basic content of the characterization result

which we now state and prove.
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Lemma 4. The map g satisfies:

gðxÞ [ hðxÞ for every x [ B

if and only if there is some �x [ B such that gð�xÞ [ hð�xÞ.

Proof. The “only if” part of the statement being obvious, we proceed to establish the “if”

part. So, assume that there is some �x [ B such that x̂ [ hð�xÞ.

Now let x be an arbitrary point in B0 ¼ ½x̂; k�. Then, x̂ ¼ ð1 2 dÞk $ ð1 2 dÞx, and:

a½x̂2 ð1 2 dÞx� # a½x̂2 ð1 2 dÞx̂� ¼ adx̂ , 1

so that ðx; x̂Þ [ V. Define y ¼ 1 2 a½x̂2 ð1 2 dÞx�. Then, we have:

x½1 2 að1 2 dÞ� $ x̂½1 2 að1 2 dÞ� ¼ 1 2 a½x̂2 ð1 2 dÞx̂�2 að1 2 dÞx̂ ¼ 1 2 ax̂

so that y # x. Thus, y [ Lðx; x̂Þ, and we have:

VðxÞ $ yþ rVðx̂Þ ¼ 1 2 a½x̂2 ð1 2 dÞx� þ rVðx̂Þ

¼ 1 2 a½x̂2 ð1 2 dÞx̂� þ að1 2 dÞðx2 x̂Þ þ rVðx̂Þ ¼ Vðx̂Þ þ að1 2 dÞðx2 x̂Þ ð43Þ

Applying equation (43) to x ¼ �x, and noting that x̂ [ hð�xÞ, we have:

Vð�xÞ ¼ Vðx̂Þ þ að1 2 dÞð�x2 x̂Þ ð44Þ

Similarly, applying equation (43) to x ¼ k, and noting (from Lemma 2) that x̂ [ hðkÞ, we

have:

VðkÞ ¼ Vðx̂Þ þ að1 2 dÞðk2 x̂Þ ð45Þ

Since �x [ B, there is l [ ð0; 1Þ, such that �x ¼ lx̂þ ð1 2 lÞk. Using this in equation (44)

and (45), we get:

Vðlx̂þ ð1 2 lÞkÞ ¼ lVðx̂Þ þ ð1 2 lÞVðkÞ

Since V is concave on B0, this implies (see Ref. [11], exercise A(3)) that V is affine on B0 and

using equation (45):

VðxÞ ¼ ½Vðx̂Þ2 að1 2 dÞx̂� þ að1 2 dÞx for all x [ B0

In view of equation (43) then, we must have VðxÞ ¼ yþ rVðx̂Þ for every x [ B, so that

x̂ [ hðxÞ for every x [ B. A

4. The bifurcation result

In this section, we state and prove the principal bifurcation result of this paper. We show that

when rj . 1, then gðxÞ [ hðxÞ for every x [ X, so the “pan policy” is optimal. And, when

rj , 1, then for every x [ B, we have gðxÞ � hðxÞ. Thus, there is a qualitative change in

behavior of optimal programs when the unit value of rj is crossed, making rj ¼ 1 a

bifurcation point.
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Theorem 1

(i) If rj . 1, the optimal policy correspondence, h, satisfies:

gðxÞ [ hðxÞ for all x [ X

(ii) If rj , 1, the optimal policy correspondence, h, satisfies:

gðxÞ � hðxÞ for all x [ X

Our bifurcation analysis of optimal behavior with respect to changes in the discount factor

may be seen as a continuation of the line of research reported in Refs. [2,9,10]. However, the

fact that we present an explicit solution of the optimal policy correspondence (for rj . 1)

makes our result sharper, albeit in the context of a more specific two-sector modelk.

We will prove this result in the following subsections. It turns out that the proof of both

parts of the result depend crucially on a quadratic inequality. We establish this technical

result before turning to the proof of the theorem.

4.1 On a quadratic inequality

In the analysis of the next two subsections, we will need to compare two magnitudes, ða=rÞ

and ½1 2 rjð1 2 ajÞ�. The connection between the two magnitudes leads to the study of a

quadratic inequality, and the bifurcation value (of the theorem above) then emerges from the

smaller root of the associated quadratic equation.

Lemma 5. The inequality:

ða=rÞ # 1 2 rjð1 2 ajÞ ð46Þ

holds for r [ ð0; 1Þ if and only if:

rj $ 1

Proof. We can write equation (46) as:

r2jð1 2 ajÞ2 rþ a # 0

In order to study this inequality, let us define, for r [ R,

FðrÞ ¼ r2jð1 2 ajÞ2 rþ a ð47Þ

kOn the other hand, explicit solutions of non-linear optimal policy functions (such as the tent map) have been
obtained, given a discount factor, by choosing the transition possibility set and the utility function appropriately
(dependent on the given discount factor). Such constructs, though useful in understanding other issues, are ill-suited
to conducting bifurcation analysis with respect to the discount factor, given the transition possibility set and the
utility function. For a full discussion of this point, and for the relevant literature, the reader is referred to Mitra and
Nishimura [9].
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Consider the equation: FðrÞ ¼ 0. This has two roots; call them r1 and r 2. One root is clearly

r1 ¼ ð1=j Þ, as one can check by substituting this value in equation (47). Also, since:

r1r2 ¼ a=jð1 2 aj Þ

and ð1 2 ajÞ ¼ að1 2 dÞ, the other root is:

r2 ¼ a=ð1 2 ajÞ ¼ a=½að1 2 dÞ� ¼ 1=ð1 2 dÞ . 1

Clearly, FðrÞ # 0 holds if and only if r [ ½r1; r2�. Since r [ ð0; 1Þ, equation (46) can hold if

and only if r $ r1 ¼ ð1=jÞ. This establishes the result. A

4.2 The non-optimality of the pan policy

We start by establishing the second part of Theorem 1, since it involves a direct application of

the dynamic programming approach, after obtaining a restriction on the slope of the value

function at the modified-golden rule stock.

Lemma 6. Suppose x̂ [ hðxÞ for some x [ ðx̂; kÞ. Then, we must have:

V 0
2ðx̂Þ $ ða=rÞ ð48Þ

Proof. Let x [ ðx̂; kÞ be given such that x̂ [ hðxÞ Then, there is 1 . 0, such that for all

z [ I ; ðx̂2 1; x̂þ 1Þ, we have ðx; zÞ [ V and {1 2 a½z2 ð1 2 dÞx�} , x, so that:

uðx; zÞ ¼ 1 2 a½z2 ð1 2 dÞx�

Define FðxÞ ¼ {z : ðx; zÞ [ V}, and for z [ FðxÞ, define:

WðzÞ ¼ uðx; zÞ þ rVðzÞ

For z [ I, we have:

WðzÞ ¼ 1 2 azþ að1 2 dÞxþ rVðzÞ

Since x̂ [ I, we obtain:

W 0
2ðx̂Þ ¼ 2aþ rV 0

2ðx̂Þ ð49Þ

For z [ I, with z , x̂, we must have:

WðzÞ ¼ uðx; zÞ þ rVðzÞ # VðxÞ ¼ Wðx̂Þ

the second equality following from the fact that x̂ [ hðxÞ. Thus, we have the first-order

necessary condition: W 0
2ðx̂Þ $ 0. Using this in equation (49), we get equation (48).

Proposition 3. Suppose the parameters of the model satisfy the condition:

rj , 1 ð50Þ

Then, for every x [ ðx̂; kÞ, we have:

x̂ � hðxÞ

Proof. Suppose, contrary to the Proposition, there is some x [ B such that x̂ [ hðxÞ. Pick

z , x̂ such that hðzÞ [ B; certainly for all z , x̂, with z close to x̂, this is true by continuity of
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the policy function on ½0; x̂�. By the optimality principle, we obtain:

Vðx̂Þ2 VðzÞ ¼ ðx̂2 zÞ þ r½Vðhðx̂ÞÞ2 VðhðzÞÞ� ð51Þ

Also, we have:
Vðx̂=ð1 2 dÞÞ2 Vðx̂Þ

½x̂=ð1 2 dÞ�2 x̂
¼ að1 2 dÞ ð52Þ

So, we can write:

VðhðzÞÞ2 Vðhðx̂ÞÞ ¼
VðhðzÞÞ2 Vðhðx̂ÞÞ

hðzÞ2 hðx̂Þ

� �
½hðzÞ2 hðx̂Þ�

¼
VðhðzÞÞ2 Vðx̂Þ

hðzÞ2 x̂

� �
½jðx̂2 zÞ�

$
Vðx̂=ð1 2 dÞÞ2 Vðx̂Þ

½x̂=ð1 2 dÞ�2 x̂

� �
½jðx̂2 zÞ� ¼ að1 2 dÞ½jðx̂2 zÞ�

ð53Þ

the inequality in equation (53) following from the concavity of V, and the last equality

following from equation (52). Using equation (53) in equation (51), we obtain:

Vðx̂Þ2 VðzÞ ¼ ðx̂2 zÞ2 r½VðhðzÞÞ2 Vðhðx̂ÞÞ� # ðx̂2 zÞ2 rjað1 2 dÞðx̂2 zÞ

and:

Vðx̂Þ2 VðzÞ

x̂2 z

� �
# 1 2 rjað1 2 dÞ ð54Þ

By Lemma 6, we have:

V 0
2ðx̂Þ $ ða=rÞ ð55Þ

Combining equation (54) and (55), and the concavity of V, we obtain:

ða=rÞ # V 0
2ðx̂Þ #

Vðx̂Þ2 VðzÞ

x̂2 z

� �
# 1 2 rjað1 2 dÞ ð56Þ

Noting that að1 2 dÞ ¼ ð1 2 ajÞ, we obtain:

ða=rÞ # 1 2 rjð1 2 ajÞ ð57Þ

Using Lemma 5, equation (57) can hold only for r $ ð1=jÞ. This contradicts condition

equation (50), and establishes the result. A

4.3 The optimality of the pan policy

We now turn to the first part of the result, stated in Theorem 1. A standard method of proving

optimality of a policy is to propose a “candidate” value function and verify that it satisfies the

functional equation of dynamic programming. By the uniqueness of the solution to the

functional equation, this identifies the candidate value function as the actual value function,

and therefore, identifies the associated candidate policy correspondence as the actual policy

correspondence#.

#For applications of this standard method in solving for value functions, see Ref. [16], and the references cited
there.

M. A. Khan and T. Mitra164



Our approach is a variation on the above method. Note that the above method does not rely

on any convex structures. However, our model has a convex structure and this leads to the

simplification that it is enough to propose a “candidate” value function on a relatively

“small” subset of the entire state space. We feel that this technique might be of wider use than

in the specific context of our two-sector model.

Pick 0 , K , x̂ such that gðKÞ , k ; x̂=ð1 2 dÞ. Define Y ¼ ½K; k�; �B ¼ ½x̂; k�;

Y 0 ¼ ½K; x̂Þ, and define a function W : Y ! R by:

Wðx̂Þ ¼ x̂=ð1 2 rÞ

WðxÞ ¼ Wðx̂Þ þ að1 2 dÞðx2 x̂Þ for x [ Y ; x . x̂

WðxÞ ¼ Wðx̂Þ2 ½1 2 rajð1 2 dÞ�ðx̂2 xÞ for x [ Y ; x , x̂

9>>=
>>; ð58Þ

and a function f : Y ! R by:

f ðxÞ ¼ x̂ for x [ �B

f ðxÞ ¼ gðxÞ for x [ Y 0

)
ð59Þ

Finally, denote the restriction of the transition correspondence G to Y by A:

AðxÞ ¼ GðxÞ> Y for all x [ Y

Lemma 7. If rj . 1, then the function W : Y ! R, defined by equation (58), satisfies the

following functional equation of dynamic programming:

WðxÞ ¼ max
x0[AðxÞ

{uðx; x0Þ þ rWðx0Þ} ð60Þ

for all x [ Y, and:

f ðxÞ ¼ arg max
x0[AðxÞ

{uðx; x0Þ þ rWðx0Þ} ð61Þ

for all x [ Y.

Proof. We consider two cases: (i) x [ �B, (ii) x [ Y 0, and analyze each in turn.

Case (i). In this case, ðx; x̂Þ [ V and it can be checked that y ; 1 2 a½x̂2 ð1 2 dÞx� is in

Lðx; x̂Þ, so that uðx; x̂Þ ¼ 1 2 a½x̂2 ð1 2 dÞx�. Thus, we have:

uðx; x̂Þ þ rWðx̂Þ ¼ 1 2 a½x̂2 ð1 2 dÞx� þ rWðx̂Þ ¼ að1 2 dÞðx2 x̂Þ þ x̂þ rWðx̂Þ

¼ að1 2 dÞðx2 x̂Þ þWðx̂Þ ¼ WðxÞ

For ðx; x0Þ [ V with x0 [ Y and x0 . x̂, we have:

uðx; x0Þ þ rWðx0Þ # 1 2 a½x0 2 ð1 2 dÞx� þ rWðx0Þ

¼ 1 2 a½x̂2 ð1 2 dÞx� þ aðx̂2 x0Þ þ r½Wðx̂Þ þ að1 2 dÞðx0 2 x̂Þ�

¼ WðxÞ þ aðx0 2 x̂Þ½rð1 2 dÞ2 1� , WðxÞ
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For ðx; x 0Þ [ V with x 0 [ Y and x 0 , x̂, we have:

uðx; x 0Þ þ rWðx 0Þ # 1 2 a½x 0 2 ð1 2 dÞx� þ rWðx 0Þ

¼ 1 2 a½x̂2 ð1 2 dÞx� þ aðx̂2 x 0Þr½Wðx̂Þ2 ð1 2 rajð1 2 dÞðx̂2 x 0Þ�

¼ WðxÞ þ ðx̂2 x0Þ½a2 rð1 2 rajð1 2 dÞÞ�

ð62Þ

Since 1 2 rajð1 2 dÞ ¼ 1 2 rjð1 2 ajÞ, we can use Lemma 5 to conclude that

½a2 rð1 2 rajð1 2 dÞÞ� , 0, since rj . 1. Thus, the expression on the last line of equation

(62) is less than WðxÞ, and so uðx; x0Þ þ rWðx0Þ , WðxÞ. This completes our verification that

equation (60) and (61) hold for every x [ �B.

Case (ii). In this case, ðx; gðxÞÞ [ V, and y ; ½1 2 aðgðxÞ2 ð1 2 dÞxÞ� is in Lðx; gðxÞÞ, so

that uðx; gðxÞÞ ¼ y ¼ ½1 2 aðgðxÞ2 ð1 2 dÞxÞ�. Thus, we have:

uðx;gðxÞÞþrWðgðxÞÞ ¼ ½12aðgðxÞ2 ð12dÞxÞ�þrWðgðxÞÞ¼ ½12aðx̂2 ð12dÞx̂Þ�

þaðx̂2 ð12dÞx̂Þ2aðgðxÞ2 ð12dÞxÞþr½Wðx̂Þþað12dÞðgðxÞ2 x̂Þ�

¼Wðx̂Þþaðx̂2 ð12dÞx̂Þ2aðgðxÞ2 ð12dÞxÞþrað12dÞðgðxÞ2 x̂Þ

¼Wðx̂Þ2 ½12rajð12dÞ�ðx̂2 xÞ¼WðxÞ

For ðx; xÞ [ V with x 0 [ Y and x 0 . gðxÞ, then:

uðx;x 0Þ þ rWðx 0Þ# ½12 aðx 0 2 ð12 dÞxÞ� þ rWðx 0Þ

¼ ½12 aðgðxÞ2 ð12 dÞxÞ� þ aðgðxÞ2 x 0Þ

þ r½Wðx̂Þ þ að12 dÞðx 0 2 x̂Þ� ¼ ½12 aðgðxÞ2 ð12 dÞxÞ� þ aðgðxÞ2 x 0Þ

þ r½Wðx̂Þ þ að12 dÞðgðxÞ2 x̂Þ� þ rað12 dÞðx 0 2 gðxÞÞ

¼WðxÞ þ aðx 0 2 gðxÞÞ½rð12 dÞ2 1�,WðxÞ

For ðx; x 0Þ [ V with x 0 [ Y and x 0 , gðxÞ, then uðx; x 0Þ # x ¼ uðx; gðxÞÞ and

Wðx 0Þ , WðgðxÞÞ, so that:

uðx; x 0Þ þ rWðx 0Þ , uðx; gðxÞ þ rWðgðxÞÞ ¼ WðxÞ

This completes our verification that equation (60) and (61) hold for every x [ Y 0. A

We can now use Lemma 7 to establish the optimality of the pan policy when rj . 1, and

we state this result separately as a proposition.

Proposition 4. Suppose the parameters of the model satisfy the condition:

rj . 1 ð63Þ

Then, for every x [ ðx̂; kÞ, we have:

x̂ [ hðxÞ

Proof. Suppose, on the contrary, that there is some xo [ ðx̂; kÞ such that x̂ � hðxoÞ. Consider

an optimal program ð�xðtÞ; �yðtÞÞ from xo, and define a sequence ðxðtÞÞ by xð0Þ ¼ xo, and
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xðt þ 1Þ ¼ x̂ for t $ 0. Then, ðxðtÞ; xðt þ 1ÞÞ [ V for t $ 0, and defining yðtÞ ¼ LðxðtÞ; xðt þ

1ÞÞ for t $ 0, we know that ðxðtÞ; yðtÞÞ is a program from xo. Since x̂ � hðxoÞ, we must have:

X1
t¼0

r tuðxðtÞ; xðt þ 1ÞÞ ,
X1
t¼0

r tuð�xðtÞ; �xðt þ 1ÞÞ ð64Þ

For l [ ð0; 1Þ, define ~xðtÞ ¼ lxðtÞ þ ð1 2 lÞ�xðtÞ and ~yðtÞ ¼ lyðtÞ þ ð1 2 lÞ�yðtÞ for t $ 0,

then, by convexity of V, ð~xðtÞ; ~yðtÞÞ is a program from xo, and:

X1
t¼0

r tuðxðtÞ; xðt þ 1ÞÞ ,
X1
t¼0

r tuð~xðtÞ; ~xðt þ 1ÞÞ ð65Þ

By choosing l sufficiently close to 1, one can ensure that ~xðtÞ [ Y ¼ ½K; k� for all t $ 0,

since xðtÞ ¼ x̂ for t $ 1, �xðtÞ [ Z ; ½0; 1=ad� for t $ 1, and x̂ is in the interior of Y. But, then,

we can apply Lemma 7 to the program ð~xðtÞ; ~yðtÞÞ (for such l), to obtain:

Wð~xðtÞÞ $ uð~xðtÞ; ~xðt þ 1ÞÞ þ rWð~xðt þ 1ÞÞ for t $ 0

so that:

WðxoÞ $
X1
t¼0

r tuð~xðtÞ; ~xðt þ 1ÞÞ ð66Þ

Since xðt þ 1Þ ¼ f ðxðtÞÞ for t $ 0, we can also use Lemma 7 to obtain:

WðxðtÞÞ ¼ uðxðtÞ; xðt þ 1ÞÞ þ rWðxðt þ 1ÞÞ for t $ 0

so that:

WðxoÞ ¼
X1
t¼0

r tuðxðtÞ; xðt þ 1ÞÞ ð67Þ

Clearly, equation (66) and (67) together contradict equation (65), establishing the

proposition. A

Remarks.

(i) It is clear from Lemma 7 that the conclusion in Proposition 4 and in part (i) of Theorem

1 can be strengthened to read x̂ ¼ hðxÞ for all x [ ðx̂; kÞ, when rj . 1; that is, the pan

policy, defined by g, is the optimal policy function when rj . 1.

(ii) The pan policy function, g, defined in equation (21), is precisely the optimal policy

function in the RSS model obtained in the undiscounted case [5]), when j . 1. Thus,

Proposition 4 establishes that for j . 1, the qualitative properties of optimal programs

are the same in the discounted case, for all discount factors ð1=jÞ , r , 1, as in the

undiscounted case. In particular, any optimal program {xðtÞ; yðtÞ} must satisfy a (straight

down the) turnpike property: xðtÞ ¼ x̂ for all t, after at most a finite number of periods.

5. Concluding remarks

The bifurcation result of Theorem 1 naturally raises two related questions. First, what kind of

optimal behavior would one observe at the bifurcation value of the discount factor r* ¼

ð1=jÞ? Second, what is the optimal policy correspondence when r , ð1=jÞ?
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It is possible that at this threshhold discount factor the optimal policy correspondence is

given precisely by G, described in equation (23). And, then, for r , ð1=jÞ, the graph of the

optimal policy correspondence is the lower boundary of the graph of G, which can be

referred to as the “check” policy function. In this case, the analogy is complete with the

undiscounted case: the bifurcation takes exactly this form, as demonstrated in Ref. [5].

However, a more intricate picture is also possible, in which at the bifurcation value of the

discount factor, and indeed for some values of the discount factor lower than this value, only

a subset of the transitions (in the middle section), described by the correspondence G, are

optimal, and there is a cascade of bifurcation values of the discount factor before one reaches

the discount factor at which the “check” policy function is optimal.

Clearly, answering the two questions requires a complete bifurcation analysis of our model

with respect to the discount factor. This goes well beyond the modest, but essential, first step

undertaken in the current paper, and we hope to report our complete results along these lines

in the not too distant future.
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